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1. Introduction

Consider an experimental situation where it is desired to compare

p > 2 test treatments to a control treatment. Let the p + I treatments

be indexed 0,l,...,p with 0 denoting the control treatment and 1,2,...,p

denoting the test treatments. It is desired to compare simultaneously the

p test treatments to the control. For improving the precision of the com-

parisons the experimental units are to be blocked in b blocks each of size

k, 2 < k < p. We are then in an incomplete block design setting.

Let Yijh denote the observation on treatment 1(0 <i < p)

in block j(l < j < b) in plot h(l < h < k). We assume the usual additive

linear model without interactions, namely

(1..) Yijh = U + i + 8j + ijh'

the £ijh are assumed to be uncorrelated random variables with mean 0 and

common variance a2. The p control-treatment contrasts a0- ai are to be

estimated by their BLUEs &0 - ai (1 < i 6 p). It is desired to choose

an experimental design (an allocation of treatments to blocks) which will

yield the best, in some sense, set of estimates among all possible designs.

For given values of b, k, and p let C(b,k,p) denote the class of all

possible incomplete block designs with b blocks, each of size k(p _. k > 2),

p test treatments indexed l,...,p, and a control treatment indexed 0.

For a design dEC(b,k,p) let r ij(d) denote the number of replications of
b

treatment i(o < i < p) in block j(l < j < b). Also let ri(d) = ! r i(d)
b -j

and Xi.(d) = jjl rij(d)r~j(d) (0 < i $ i < p). Notice ri(d) represents

the number of replications of treatments in the entire design d and

Xi,(d) represents the number of times treatments i and i are paired to-

gether in a block summed over all blocks.
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For d EC(b,k,p), let M(d) denote the information matrix correspond-

ing to estimating all 0 c -ail I < i < p, (as in Bechhofer and Tamhane

(1981)). M(d) is a nonnegative definite pxp matrix and is nonsingular

if and only if all the -0 - ai are estimable, in which case it is proportional

to the inverse of the covariance matrix of 0 " ail 1 < i < p.

We now make our goal of finding a design d EC(b,k,p) which gives us

the best, in some sense, set of BLUEs &0 (1 - t < .p) more explicit.

Following the work of Kiefer (see for example Kiefer (1958, 1959, 1971,

and 1974))we seek a d EC(b,k,p) which minimizes O(M(d)) for some function

. over C(b,k,p). Such a design will be called *-optimal. Restricting to

non-singular designs, some common examples of * are 0o(M(d)) = detM'l(d)

(so called D-optimality), 0l(M(d))= tr M1(d) (so called A-optimality),

and O(M(d)) = maximum eigenvalue of M(d) (so called E-optimality). In

the present context of control-treatment comparisons, A-optimality has an
p

appealing statistical interpretation, viz. it minimizes_= var(ao- i)i~l

over all designs. We are, however, yet to realize natural statistical

interpretations for the other criteria.

Traditionally, Kiefer and other researchers were interested in an

orthonormal basis of treatment contrasts. In other words, the aim was to

determine good designs for estimating P where - is the vector of all the

p + 1 treatment effects and P is a p x p + I matrix of zero row sums and

orthonormal rows. Nothing much seems to be known for the situation when

the contrasts are not mutually orthogonal. In this paper we look at one

such situation - that of control-treatment comparison.

Let vi(d), 1 < i < p, be the positive eigenvalues of the well known

"C-matrix" of normal equatiohs for a, for a design d in p + 1 treatments

in b blocks of k plots each. Let Po be any vector of p independent
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treatment contrasts, and V(P&(d)) be the covariance matrix of the BLUE's

of PM. Then it can be shown that

det V(P&(d)) = (det(PP'))(vl(d)...vp(d))- .

This can be established by starting from a spectral decomposition of the

C-matrix for the design d, or by proving a result like equation (A.2) of

Bechhofer and Tamhane (1981). Since a B.I.B. design, if it exists, is

D-optimal in the traditional sense of estimating orthonormal contrasts,

we have the following theorem.

Theorem 1.1 A B.I.B. design, if it exists, is D-optimal for estimating

any set of p independent treatment contrasts.

It has come to our notice that this result has been known for some time

(Hedayat (1974)). Observe that the O-optimality criterion ignores the

particular interests of the experimenter expressed through the matrix P.

From the work of Kiefer and others on optimal incomplete block de-

signs for estimating an orthonormal basis of treatment contrasts, it is

known that the B.I.B. design is optimal, not only according to the D-

criterion, but under a very large class of optimality criteria as well

(see Kiefer (1958, 1959, 1971, 1974 and 1975)). Such results might lead

us to expect that in our setting an optimal design d in C(b,k,p) would

be symmetric (in some sense) and binary in the test treatments l,...,p

(but not in the control). Since the control plays a special role in our

setting we might also expect that the number of replications of the con-

trol (more specifically the roj(d)) will be an important factor in deter-

mining what design d is optimal. These expectations are indeed found to

be the case as will be seen in the results of section 2.
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The proper sense of symmetry in a design d EC(b,k,p) turns out to be

that all xit(d) are equal for I _ i $ I _< p and all Xo (d) for 1 < _< p

are equal (but not necessarily to the Ii.(d) for 1 _< . < p). Such designs

are called balanced treatment incomplete block designs (abbreviated BTIBs)

and were first introduced in Bechhofer and Tamhane (1981) in connection

with making joint confidence statements about the contrasts a0 - ai,

1< i < p. The interested reader is referred to this paper for more infor-

mation on BTIB designs. We remark that if a design d EC(b,k,p) is a BTIB design

its information matrix M(d) is completely symmetric (i.e. all off diagonal

elements equal and all diagonal elements equal). Bechhofer and Tamhane

(1981) also have a review on available literature for designs for control-

treatment comparisons.

Section 2 of this paper contains results about what designs are *-

optimal for a fairly broad class of functions *. As an important applica-

tion we discuss A-optimal designs.

The class of functions considered in section 2 does not include

E-optimality. This is treated in section 3, which also includes a result

showing that an A-optimal design is optimal according to another statistic-

ally interesting criterion. Section 4 contains some concluding remarks.

2. A-Optimal Designs

We begin this section with a series of lemmas culminating in a general

theorem from which A-optimal designs may be obtained as a special case.

Suppose dEC(b,k,p) is arbitrary. Let t be the set of all p! permu-

tations of the test treatments 1,...,p. Let ad,coEt, be the design re-

sulting from d by the permutation a of the treatments in d. We define

(2.1) M(d) = I M(ad)/p! = I Tr'M(d)TrIp!

where I is the set of all p x p permutation matrices.



Lemma 2.1. If d EC(bk,p) then A(d) has eigenvalues pl(d), u2(d)

=(d) with

V11 u(d) = ( xoi(d)/k)/p = (r0(d)- I r (d)/k)/p
j=l

p p2 b 2
=I r1(d) - I r (d)/k-(r(d) - r(d)/k)/p/(p-l).
1=1 '1=1 j=1 j-1 0

In addition if d is binary in test treatments

b
u2(d) = {b(k-l)-((k-l)/k)ro(d)-(ro(d)- .1 r2j(d)/k)/p}/(p-l)

J=1 O

pf. From the appendix of Bechhofer and Tamhane (1981), the entries of

M(d) are

b 2
r1. (d) - I r1 l(d)/k (i=i2)

11 j=1 i3j1
M l 1i2  = .Xili2(d)/k (il#i2)

and the sum of the entries in the i-th row (or i-th column) is xoi(d)/k.

Thus is it straightforward to check that

(2.2)ri(d) - I(I)r ( 2 1 1k(p-l)}/p)I
1="l j1<il <i2 9  1 2

Xi2 /kp(p-l))Jp~ p
l_1 <i 2<p 1 2

where I is the p x p identity matrix and J is the p x p matrix all of
p pip

whose entries are +1. The first part of the lemma now follows from the

well known fact that aI p+ bJp,p has eigenvalues a with multiplicity p-I

and a + bp with multiplicity 1. The second part involves essentially

straightforward computations only.
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Lemma 2.2. Suppose * is a convex real-valued possibly infinite function
on the set of all p x p non-negative definite matrices and * is invariant
under permutations, i.e. if i is a permutation matrix, *(ir'Mr) = (M).

Then for dEC(b,k,p), *(M(d)) < (M(d)).

pf. O(M.d)) = .*(M(ad))/p! since 0 is permutation invariant. Thus

by convexity *(M(d)) > ( M(ad)/p!) - O(M(d)).

Lemma 2.3. Suppose 0 is some real-valued possibly infinite function on

the set of all non-negative definite p x p matrices with the property that

if M and N are non-negative definite p x p matrices with eigenvalues

uI 1 12 <. < up and v, < v2 <__ .5. _p respectively which satisfy

Ii  >Vi  for i = l,...,p then O(M) __ (N).

Let d EC(b,k,p) be a design which is not binary in test treatments.

Then there exists d*EC(b,k,p) which is binary in test treatments with

ro(d*) = ro(d) and which satisties O(A(d*)) <. O(R(d)).

pf. In each block of M(d) replace any duplicates of test treatments by

test treatments not in the block so that each block is binary in test

treatments (this is possible since k < p). Call the resulting design d*.

Notice d* is binary in test treatments, has r0 (d*) = roj(d) for all

p p
1 < j < b, and has ri(d*) = Z ri(d). As a result it is easy to see

p b 2 p b 2
j r1 j(d*) <_ j 1 rj d)

From lemma 2.1 it then follows that the eigenvalues of A(d) and M(d*)

satisfy p1(d) = ul(d*) and w2(d) u ... u (d) <u2(d*) ... u p(d*).

Hence by the property of 0 given in the statement of the lemma,
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Lemma 2.4. Among all non-negative integers rOl ,r02 ... rOb satisfying
b b 2jbl r0j = r, where r is a fixed constant, the value of b r2j is minimized

by choosing r - b[r/b] of the r to have value [r/b] + 1 and the remain-

ing b(l+[r/b]) - r of the roj to have value [r/b]. Here [.] denotes the

greatest integer function.

pf. This is lemma 2.3 of Cheng and Wu (1980).

Lemma 2.5. Suppose 0 is as in lemma 2.3. Suppose d EC(b,k,p) is binary

in test treatments and has r0(d) > bk/2. Then there exists d*EC(b,k,p)

which is binary in test treatments, has ro(d*) < bk/2, and satisfies

(Mi(d*)) <

pf. Take d* to be the design where in each block of d we replace all

test treatments by the control and all of the original replications of the

control by differing test treatments not originally in the block. Notice

b b
(2.3) ro(d*) = X roj(d*) = Z (k-r0 (d))= bk - ro(d) < bk/2 < ro(d)

j=l j=l

( )b 2 = b 2(2.4) ro(d*) - " r0j(d*)/k- ro(d) I r"= (d)/k.

From (2.4) it follows that if Ul(d), 42(d) = ... = up(d) and ul(d*),

P2(d*) = ... = up (d*) are the eigenvalues of A(d) and A(d*), respectively,

as given in lemma 2.1, then p,(d) = ul(d*). Also from (2.3), (2.4), and

lemma 2.1, u2(d) < u2(d*). By the property of € given in the lemma it

follows that O(M(d*)) < o(A(d)).

Theorem 2.1. Suppose is a real-valued possibly infinite function on

the set of all p x p non-negative definite matrices satisfying



p*(Mf = i)
1=1

where p 1  U2  ... up are the eigenvalues of M, f is a real valued

possibly infinite function on the set of all non-negative numbers which

is continuous on the set of all positive numbers, has fV < 0 and f" > 0

(here primes denote differentiation). Suppose there is a 6EC(b,k,p) such

that M(6) is completely symmetric and

(i) 6 is binary in test treatments

(ii) ro(6) is the value of the integer r, 0 < r < [bk/2], which

minimizes

(2.5) g(r;b,k,p) = f((r-h(r;b)/k)/p)

+ (p-l)f((b(k-l)-((k-l)/k)r-(r-h(r;b)/k)/p)/(p-l))

where

(2.6) h(r;b) = (b(l+[r/b])-r)[r/b]2 + (r-b[r/b])([r/b]+l)2

(iii) the r0 (6) have value either [ro(a)/b] or [ro(6)/b] + 1.

Then is *-optimal over C(b,k,p).

pf. First we notice o and f have the following properties

(a) o is convex and orthogonal invariant (i.e. if r is an orthogonal

matrix then O(r'Mir) =(M))

(b) f( i) < f(i) if I i  >_ i  for all I < i <_ p.
icl i--l

(c) if ul _ = P2= Pp I i = ' p, 9'l > Vi' and

p p p P
pi v then f(u i ) < Z f(vi).

i=l i l i--l -i=l 1

Property (a) follows from the fact that f" > 0. Property (b) follows from

the fact that f' < 0. Property (c) follows from the fact that o regarded

as a function of (i l , . p ) ' is Schur convex.
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Now suppose 6 is as given in the theorem. Let d EC(b,k,p) be any

design which is binary in the test treatments. By (a) and lemma 2.2,

¢(M(d)) *_ O(M(d)). If ro(d) > bk/2 by lemma 2.5 there exists d EC(b,k,p)

with ro(d*) < bk/2 and O(tA(d*))j (_(_Md)). Replace d by d*. If ro(d) bk/2

let d* = d. Notice by lemma 2.1 M(d*) has eigenvalue7

b
ul(d*) = (ro(d*) - I r2 (d*)/k)/p

U2(d*) P -=p(d*)

b
(b(k'l)'((k-l)/k)r0 (d*)'(ro(d*)- roj(d*)/k)/p}/(p-l).

~j=l

Using the facts k > 2, ro(d*) < bk/2, and some calculus, one can prove

that,

2 (d*) _ bk/4p

b
max(r0 -j rIj/k)/p

j1

>- I (d*)

where the maximum is over all real numbers roro1 ,...,ro 0 such that
b

r> 0, roj 1 0, 1 < j < b, and j I roj = r < bk/2. Thus the eigenvalues

lj(d*),2(d*)...up (d*) of A(d*) satisfy ul(d*) .__u 2 (d*) = ... = up(d*).

Next notice

(2.7) O (FI(d*))

b
= f(ul(d*)) + (P'l)f("2 (d*)) = f((r 0(d*)- . ro (d*)/k}/p)

j=1

b(P'l)f(fb(k'l)'((k'l)/k)ro(d*) (o d ) "i roi(d*)/k)/P)/(P'l))"
+ ~ J

,~
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For a fixed value of r0(d*) < bk/2 we have ul(d*) + (p-1)u 2(d*)

= (k-l)(b-ro(d*)/k) = constant and the largest possible value of ul(d*)
q b

= (r0(d*)- rOj (d*)/k)/p occurs whe. b(l+[r0 (d*)/b])-ro(d*) of the
j=l

r0 (d*) are [r0(d*)/b] and ro(d*) - b[ro(d*)/b] of the roj(d*) are

[ro(d*)/b] + 1 by lemma 2.4. This choice of the roj(d*) maximizes ul(d*)

for fixed ro(d*) and hence by property (c) of o minimizes ,(A(d*)). If

we then select a value of ro(d*) < bk/2 (with the optimal choice of the

roj(d*)) which minimizes the R.H.S. of (2.7) we see that this is precise-

ly the value of ro(a) and the roj(6) stated in the theorem. We thus con-

clude 6 is a design minimizing ¢(A(d*)) among all d* which are binary in

test treatments and have ro(d*) i bk/2. Since M(6) is completely symmet-

ric, M(6) = A(6) and we see using lemma 2.2 that €(M(6)) <_ O(M(d)) ._ *(M(d))

(d is the design, binary in test treatments, we chose arbitrarily) we con-

clude 6 is *-optimal among all d which are binary in test treatments.

Property (b) of * and lemma 2.3 then give us that 6 is O-optimal among all

designs.

Theorem 2.1 is useful for finding optimal designs for many 0 such

p p
as O(M) = - lnui (D-optimality) and O(M) = i l/u (A-optimality).

It is not directly applicable to the problem of finding E-optimal designs,

i.e. the design SEC(b,k,p) which minimizes the maximum eigenvalue of

M1(6) (or maximizes the minimum eigenvalue of M(6)).

As mentioned in the introduction A-optimal designs are statistically

very meaningful. So we examine such designs in some detail. A design

dEC(b,k,p) is A-optimal if it minimizes tr M l(d) over C(b,k,p). In the

notation of theorem 2.1 this means O(M(d)) - tr M l(d) and f(u) = 1/u.

Equations (2.5) and (2.6) then become
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(2.7) g(r;bk,p) a p/{r-(h(r;b)/k))

+ (p-1) 2 /(b(k-l)-r(k-l)/k-(r-h(r;b)/k)/p)

with

(2.8) h(r;b) [r/b] 2(b+b[r/b]-r) + (r-b[r/bJ)([r/b]+l) 2 .

The following result result is a consequence of theorem 2.1.

Theorem 2.2. Suppose R is the value of the integer r, 0 < r < [bk/2],

which minimizes g(r;b,k,p) as given in (2.7). Also suppose 6EC(b,k,p)

is a B.T.I.B. design such that

(i) 6 is binary in test treatments

(ii) ro(6) - R

(iii) ro(6) - R/b] or [R/b] + l forl <j _p

then 6 is A-optimal over C(b,k,p).

The integer r which minimizes g(r;bk,p) can easily be found using

a computer. As an example, r = 18 minimizes g(r;24,3,9) and the follow-

ing B.T.I.B. design is therefore A-optimal.

(0 0 00000000000000001 12345

I 1 1 2 22 2 3 3 344 566 7 72 6 34 58

4 584 5 785 79 69 689899 7687 9

Here columns correspond to blocks and the numbers are the treatment labels.

Having determined the integer R, the next step is to investigate

whether a B.T.I.B. design satisfying (i)-(iii) exists or not. Writing

q = [R/b] and a = R - bq, an A-optimal design looks like

d = ( 1d- \(2))

where d(1) consists of q plots in each of b blocks and d(2) the rest of the

k - q plots in the blocks. d(1) consists entirely of the control, while d(2)

is binary in all p + 1 treatments with the control appearing a times.
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The A-optimal design shown above gives an example of d = d(2) since here

q=0.

If a - 0, then d(2) has to be a B.I.B. design in the p test treatments.

The following table gives some examples of A-optimal designs having this

structure.

b k b q
10 3 5 1

14 4 7 1

30 2 4 1

30 4 5 1

30 4 6 1

30 5 10 1

30 6 25 1

Let us denote by dq a design in C(b,k,p) which is a B.I.B. in the

k - q plots of b blocks in the p test treatments, augmented by the con-

trol in each of the remaining q plots of b blocks. Designs of this type

have been mentioned briefly by Cox (1958, p. 238); Pesek (1974) has

look at d1. Neither of them have considered these as optimal designs. The

interested reader may find their efforts put in perspective in Bechhofer

and Tamhane (1981). We shall now show that for many q, dq cannot be a

very bad design - it is at least A - better than a B.I.B. design in all

p + 1 treatments.

A B.I.B. design is a binary B.T.I.B. design with ro(d) = bk/(p+l).

Moreover, for any B.T.I.B. design, tr M(d) "l = g(r0(d);b,k,p). Hence we

look at the sign of the function,

(2.9) g1(q) g(qb;b,k,p) - g(bk/(p+l);b,k,p)

= p/{r-(bq2)/k}

2 ~22
+ (p-1) 2/{b(k-l)-r(k-l)/k-(r-(bq )/k)/p} - 2p2/(b(k-l)} ,

with q allowed to be positive integers only. If one allows q to be any
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real number, then it is easy to see that the polynomial equation

g1(q) = 0

has no roots in the interval [l,(k-l)/2] of q. Moreover gi(I) < 0 and

g1((k-l)/2) < 0, but g1(k/2) > 0. Thus in particular g1(q) < 0, q - 1,2,

,(k-l)/2). We summarize this in the following theorem.

Theorem 2.3. d is A-better than a B.I.B. design in all p + 1 treatments
q

for all q = 1,2,...,[(k-l)/2], whenever they exist.

3. E-Optimal Designs

We now determine E-optimal designs.

Theorem 3.1. If there exists 6 EC(b,k,p) such that

(i) every block contains exactly k/2 replications of the control, if

k is even, or either [k/2] or [k/2] + 1 replications of the con-

trol if k is odd

and

(ii) X01(6) = X02(6) = . OpM(6)

then 6 is E-optimal over C(b,k,p).

pf. We first show that xOl(6)/k is the minimum eigenvalue of M(6). To

see this, notice that the sum of the entires in the i-th row of M(5) is

xOi(6)/k. Since x01(6) = X0i(6) for all i, all the row sums of M(6) are

A01(6)/k. It therefore follows that the p x 1 vector (ll,...,I)' is an

eigenvector of M(3) with elgenvalue A01(d)/k.

To verify that X01(6)/k is the smallest eigenvalue of M(6), let

be any eigenvector of M(6) other than (l,.,.,I)'. Without loss of gen-

erality we may assume the largest coordinate in absolute value of e is

+1. Suppose +1 is the i-th coordinate of i. Let X denote the eigenvalue
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of M(S) corresponding to the elgenvector e. Let ej denote the j-th co-

ordinate of ' and mij(6) the i,j-th entry of M(6). The l-th coordinate

of M(6) is

mtj(6)e j  eimit(a) + ejm (6))6 ) + m (a)
Jul j j=l

J3i j~i

" j!, mt j ( l ) = 10i(6)/k - AOl()/k"

The inequalities above follow from the fact that e = +1, leil < 1 for

all j, and m ii(6) < 0 for i t j. Since Xe = M(6)' and the i-th coordinate

of XAe is xei = X, we have x >o'(d)Ik.

Since e was an arbitrary elgenvector, hence x was an arbitrary eigen-

value, we conclude ,O1(a)/k is the minimum eigenvalue of M(6).

Notice

Ol( 6 ) I k = {  x0i(6)/k)/p= ro(6)- r*b 2
i-l j /k /

By a proof similar to that used in lemma 2.4 one can show that among all

integers rol,rO2 ... ,rOb such that 0 < roj <_ k, the value of

b b
ro jl ro2/k(ro-1I rj) is maximized by choosing all roj = k/2 if k

is even or roj a [k/2] or [k/2] + 1, j - l,...,b, if k is odd. Since these

are precisely the values of the roj(6) we conclude

b
(3.1) min eigenvalue of 4(a) = (r(6)- 1 rj(6)Ik)Ip

0 Jul

b
_ (ro(d)- I r-j(d)/k)/p

jal

for all deC(b,k,p). For any dEC(b,k,p)
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mn elgenvalue of Mid) m 'Mld)

< min eigenvalue of M(8)

where we have used the facts that mij(d) xoi(d)/k,

p b
i1(d)/k =r 0(d) roj(d), and (31).

We conclude that a has the largest minimum etgenvalue among all

d EC(b,k,p) and hence it follows that a is E-optimal over C(b,k,p).

Theorem 3.1 can be used to find E-optimal designs for comparing test

treatments to a control. When k is even each block in an E-optimal design

d must have exactly k/2 replications of the control. It is straightfor-

ward to see that a necessary and sufficient condition for a design d to

be E-optimal when k is even is that m a bk/2p be an integer, rt(d) - m

for all 1 < i < p, and each block contain exactly k/2 replications of the

control. Thus each of the following designs are E-optimal when b-k- p-4

0 0 0 0 0 0 0 0 0 0 0 0

1: 2 3 4 1 2 3 4 1 1 3 3

12 3 4 2 3 4 1 2 24 4

When k is odd there is more flexibility in finding designs which are

E-optimal. In particular an E-optimal design d can have either (k/2J or

[k/2] + 1 replications of the control in a given block and this flexibil-

ity allows one to meet the condition =ol(d) - ... - xop(d) more easily

than when k is even. For example, when b= 5, k- 5, and p- 6 it is easy
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to check that the condition =1(d) =.,.. = cannot be met if all

blocks have exactly 2 replications of the control or if all blocks have

exactly three replications of the control. However the design, (00000)0 0 0 0 0

d= 1 000
d :40 0 1

2 51 3 5

3 624 6

has x0 (d) 5 for all 1 < i < 6 and is E-optimal.

One can show that when k is odd if b = y + w, where and a are

integers > 0 such that s = y[k/2]/p and t = w([k/2J+l)/p are both non-

negative integers, then an E-optimal design d exists. In fact any design

consisting of y blocks in which each test treatment appears exactly s

times and the control appears exactly [k/2] + I times in each of the y

blocks, and consisting of w blocks in which each test treatment appears

exactly t times and the control appears exactly [k/2] times in each of

the w blocks, is E-optimal.

It should also be remarked that if an E-optimal design also happens

to be a B.T.I.B. which is binary in test treatments, then the design may

have additional optimality properties. For example, the design0ooo0
d= 1 1 2

2 3 3

with b= 3, k= 3, p= 3 turns out to be both E-optimal and A-optimal.

Even though E-optimality is an effective way of minimizing a norm of

M(d) "  in the present context it does not seem to possess a very natural

statistical meaning. If one favours a minimax style approach then possibly

one way is to minimize the maximum variance of ({o-ai), the maximum being

over 1 < i < p, minimum over all d EC(b,k,p). In other words, one considers
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the criterion o(M(d)) - maximum diagonal entry of M'1 (d). Since 0 is con-

vex and permutation invariant lemma 2.2 says that o(R(d)) S *(M(d)) for

any d EC(b,kp). Furthermore, since R(d) is completely symmetric, it is

easily verified that O(R(d)) = tr A(d)l/p. From these two observations

it follows that if a EC(b,k,p) is as in theorem 2.2 than it is O-optimal

as well as A-optimal. This lends additional significance to the A-optimal

designs.

A class of criteria that are sometimes considered in optimal design

investigations (see Kiefer (1g74)) are the 0q criteria, 0 < q < , where

" t(M(d)) = ~

,q i=l

and p ... _ are the eigenvalues of M(d). D-optimality and E-optimality

are limiting cases of these criteria in the sense that lim(.q(M(d))/p) I / q

q-0
= (det M'l(d))I/p and lim( q(M(d))/p)l/ q = max eigenvalue of M'1(d). In

q-
particular, 0 and 0. are sometimes used to denote the D-optimality and

E-optimality criteria, respectively. Also notice that *I is just the

A-optimality criterion.

An examination of our above results for D-, A-, and E-optimality (or

for *0' $1, and o ) indicates that the number of replications of the con-

trol in an optimal design is smallest for D-optimality, second smallest

for A-optimality, and largest for E-optimality. This suggests that the

number of replications of the control in a B.T.I.B. design which is 0q-

optimal is increasing as q increases. Since *q, 0 < q < - , satisfies

the conditions of theorem 2.1, it is possible (although somewhat tedious)

to verify that this is indeed the case. From this it follows that if

dEC(b,k,p) is a B.T.I.B. design which is binary in test treatments with
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[bIp+l)]<ro(d) <b[k/2, then d is *q-optimal for some 0 <q <
qq

4. Concluding Remarks

B.T.I.B. designs were introduced by Bechhofer and Tamhane (1981).

The property of being balanced in test treatments make these designs

attractive for use in comparing test treatments to a control. It has

been an open question as to what sort of optimality properties, if any,

these designs might have. This paper answers that question in part by

showing that certain B.T.I.B. designs do indeed have some optimal pro-

perties. It is hoped that this paper will provide added incentive for

the study of these designs, particularly their construction.

One interesting feature of the results contained in this paper is

that exactly what design is optimal depends very mcuh on the optimality

criterion used. This is different from the usual incomplete block de-

sign setting where orthonormal treatment contrasts are of interest. In that

setting optimal designs are often found to be somewhat independent of

the criterion used and hence selection of an appropriate design is

simplified. The results of this paper show that the selection of an

appropriate design for comparing test treatments with a control is un-

fortunately sensitive to the optimality criterion used. Unless one has

a clear idea of the optimality criterion one wishes to use in selecting

a design, selection of an appropriate design is not as straightforward

as in the traditional setting of estimating an orthonormal basis of

treatment contrasts. We do recognize, however, the poignant statistical

appeal of A-optimality.

-. -
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pf. In each block of M(d) replace any duplicates of test treatments by

test treatments not in the block so that each block is binary in test

treatments (this is possible since k < p). Call the resulting design d*.

Notice d* is binary in test treatments, has roj(d*) - r0 (d) for all

I < j I b, and has ri(d*) = [ ri(d). As a result it is easy to see

p b r 2 p b 2ill rj _jd)< i Z r ij(d).
i 21 j l = j l1

From lemma 2.1 it then follows that the eigenvalues of A(d) and R(d*)

satisfy pl(d) = pl(d*) and P2(d) = ... 
= u(d) <u2 (d*) = . = (d*.

Hence by the property of 0 given in the statement of the lemma,

d < (
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